Lawrence Livermore National Laboratory

Dynamic Strength Experiments

Presented at

Joint U.S.-Russia Conference on Advances in Material Science

August 31 – September 3 2009

Robert M. Cavallo

Acknowledgements

- Russ Olson (LANL, experiments)
- Mary Jane Graham Lindquist (LLNL, design)

We use solid Rayleigh-Taylor instability growth to study strength models

- Strength experiments can be done at different pressures, strains and strain rates
 - Hopi-bar: P = 0, $\varepsilon \sim 0.3 0.5$, $\dot{\varepsilon} \sim 10^4 \text{ s}^{-1}$
 - HE-driven Barnes experiments: $P \sim 0.5$ Mbar, $\varepsilon \sim 0.5 3$, $\dot{\varepsilon} \sim 10^5 10^6$ s⁻¹
 - Laser-driven Barnes experiments: $P \sim 0.2 10$ Mbar, $\varepsilon \sim 3$, $\dot{\varepsilon} \sim 10^6 10^7 \, \text{s}^{-1}$
- HE experiments at pRad on vanadium and tantalum complement on-going work on the Omega and NIF lasers.
- Preliminary analysis of the pRad data suggests we can measure material strength of Ta to better than 15%

We use a two stage HE drive to accelerate isentropically a solid rippled metal target

Strength inhibits Rayleigh-Taylor growth

We studied vanadium and tantalum under different drive conditions

Different shots explore the effects of variations in *gap size*, wavelength and initial amplitude

Shot	Material	Gap (mm)	λ (mm)	η ₀ (mm)	P _{peak} (kbar)	dε/dt (s ⁻¹)
292	V	3.0	3.0	0.04	520	9 x 10 ⁴
293	V	4.5	3.0	0.03	460	5 x 10 ⁴
299	V	4.5	3.0	0.04	470	6 x 10 ⁴
291	Ta	3.0	2.0	0.04	570	4 x 10 ⁵
297	Та	6.0	2.0	0.04	470	2 x 10 ⁵
298	Ta	4.5	2.0	0.04	510	3×10^5

We explore Shot 297 in detail here

We use independent flyer plate data to model the drive

Material plot of problem set up at t = 0(mesh resolution = 25 μ m) **Stainless Steel Vacuum Metal Sample** HE (9501) (V or Ta) Flyer plate Gap 0.5 2.0 1.0 X (cm) 1.5 Flyer plate velocity Velocity (km s⁻¹) 0 5 4 3 2 0 Set up to measure 0 17 18 19 20 21 22 24 flyer plate motion Time (µs) **PDV Probe Layout**

The same JWL++ parameters fit the drive data from all the shots very well

The loading profile is dynamic, with the peak pressure occurring prior to release

The tantalum data have large uncertainties in the growth due to the edge of the sample blocking the view of the troughs

Comparison with classical RT simulations demonstrates material strength is limiting the growth

No material strength case

The lack of pullback in the velocity simulation compared with the data also indicates strength

The nominal PTW parameters fit both the velocity and amplitude data well

The inferred peak flow stress is 11.6 kbar for Ta at an applied stress of 470 kbar and a strain rate of ~2.5 x 10⁵ s⁻¹

The strains and strain rates vary with time and space

We estimate the peak flow stress to be 12±1.5 kbar based on the SG model fits to the error bars

Conclusions

- HE driven Barnes experiments on vanadium and tantalum provide a platform for studying material strength at P ~ 500 kbar and strain rates ~ 10⁵ s⁻¹
- Our HE model captures the drive behavior very well
- The error bars on shot 297 due to incomplete edge extraction dominate the error in the strength measurement
- Nominal PTW parameters for Ta fit the growth well
- Using the Steinberg-Guinan model, we estimate the peak flow stress for the Ta shot 297 to be 12 ± 1.5 kbar, consistent with the PTW interpretation
- These results will aid in the design and interpretation of laser driven Barnes experiments